Recent works have shown that unstructured text (documents) from online sources can serve as useful auxiliary information for zero-shot image classification. However, these methods require access to a high-quality source like Wikipedia and are limited to a single source of information. Large Language Models (LLM) trained on web-scale text show impressive abilities to repurpose their learned knowledge for a multitude of tasks. In this work, we provide a novel perspective on using an LLM to provide text supervision for a zero-shot image classification model. The LLM is provided with a few text descriptions from different annotators as examples. The LLM is conditioned on these examples to generate multiple text descriptions for each class(referred to as views). Our proposed model, I2MVFormer, learns multi-view semantic embeddings for zero-shot image classification with these class views. We show that each text view of a class provides complementary information allowing a model to learn a highly discriminative class embedding. Moreover, we show that I2MVFormer is better at consuming the multi-view text supervision from LLM compared to baseline models. I2MVFormer establishes a new state-of-the-art on three public benchmark datasets for zero-shot image classification with unsupervised semantic embeddings.
translated by 谷歌翻译
尽管在零射门学习(ZSL)方面取得了巨大进展,但大多数现有方法仍然依赖于人类通知的属性,这些属性很难注释和扩展。一个无监督的替代方法是使用与其语义类名称相关的单词嵌入来表示每个类。但是,从预训练的语言模型中提取的单词嵌入不一定会捕获视觉相似性,从而导致零拍的性能差。在这项工作中,我们认为在线文本文档,例如Wikipedia,包含有关对象类的丰富视觉描述,因此可以用作ZSL的强大无监督的侧面信息。为此,我们提出了I2Dformer,这是一种基于变压器的新型ZSL框架,共同学会通过在共享嵌入空间中对齐两个方式来编码图像和文档。为了从嘈杂的文档中提取歧视性的视觉单词,我们介绍了一个新的跨模式注意模块,该模块可以学习图像补丁和文档单词之间的细粒度相互作用。因此,我们的i2dformer不仅学习了捕获视觉相似性的高度歧视文档的嵌入,而且还获得了将视觉相关单词定位在图像区域中的能力。定量地,我们证明我们的i2形式在三个公共数据集上的零照片和广义零局学习设置下都显着优于先前无监督的语义嵌入。定性地,我们表明我们的方法会导致高度可解释的结果,其中文档单词可以基于图像区域。
translated by 谷歌翻译
零件代表不同对象的几何和语义相似性的基本单位。我们争辩说,部分知识应与观察到的对象课程中有款组合。对此,我们将3D组成零射击学习作为从看作识的零件泛化的问题,从而看成了语义分割。我们通过将任务与所提出的组成部分数据集进行基准测试,提供结构化研究。该数据集是通过处理原始PartNet来创建的,以最大化不同对象的部分重叠。现有点云部分段方法未能在此设置中概括到未遵守的对象类。作为解决方案,我们提出了分解共识,其将零件分割网络与部分评分网络相结合。我们方法的关键直觉是某些部件的分割掩码应该具有与其部分分数分开的零件分数的共识。在生成最合适的分割掩模之前在每个对象部分中定义的不同部分组合的两个网络原因。我们展示了我们的方法允许组成零射分段和广义零拍分类,并在两个任务中建立最先进的状态。
translated by 谷歌翻译
Via operator theoretic methods, we formalize the concentration phenomenon for a given observable `$r$' of a discrete time Markov chain with `$\mu_{\pi}$' as invariant ergodic measure, possibly having support on an unbounded state space. The main contribution of this paper is circumventing tedious probabilistic methods with a study of a composition of the Markov transition operator $P$ followed by a multiplication operator defined by $e^{r}$. It turns out that even if the observable/ reward function is unbounded, but for some for some $q>2$, $\|e^{r}\|_{q \rightarrow 2} \propto \exp\big(\mu_{\pi}(r) +\frac{2q}{q-2}\big) $ and $P$ is hyperbounded with norm control $\|P\|_{2 \rightarrow q }< e^{\frac{1}{2}[\frac{1}{2}-\frac{1}{q}]}$, sharp non-asymptotic concentration bounds follow. \emph{Transport-entropy} inequality ensures the aforementioned upper bound on multiplication operator for all $q>2$. The role of \emph{reversibility} in concentration phenomenon is demystified. These results are particularly useful for the reinforcement learning and controls communities as they allow for concentration inequalities w.r.t standard unbounded obersvables/reward functions where exact knowledge of the system is not available, let alone the reversibility of stationary measure.
translated by 谷歌翻译
We study the concentration phenomenon for discrete-time random dynamical systems with an unbounded state space. We develop a heuristic approach towards obtaining exponential concentration inequalities for dynamical systems using an entirely functional analytic framework. We also show that existence of exponential-type Lyapunov function, compared to the purely deterministic setting, not only implies stability but also exponential concentration inequalities for sampling from the stationary distribution, via \emph{transport-entropy inequality} (T-E). These results have significant impact in \emph{reinforcement learning} (RL) and \emph{controls}, leading to exponential concentration inequalities even for unbounded observables, while neither assuming reversibility nor exact knowledge of random dynamical system (assumptions at heart of concentration inequalities in statistical mechanics and Markov diffusion processes).
translated by 谷歌翻译
Diabetic Retinopathy (DR) is considered one of the primary concerns due to its effect on vision loss among most people with diabetes globally. The severity of DR is mostly comprehended manually by ophthalmologists from fundus photography-based retina images. This paper deals with an automated understanding of the severity stages of DR. In the literature, researchers have focused on this automation using traditional machine learning-based algorithms and convolutional architectures. However, the past works hardly focused on essential parts of the retinal image to improve the model performance. In this paper, we adopt transformer-based learning models to capture the crucial features of retinal images to understand DR severity better. We work with ensembling image transformers, where we adopt four models, namely ViT (Vision Transformer), BEiT (Bidirectional Encoder representation for image Transformer), CaiT (Class-Attention in Image Transformers), and DeiT (Data efficient image Transformers), to infer the degree of DR severity from fundus photographs. For experiments, we used the publicly available APTOS-2019 blindness detection dataset, where the performances of the transformer-based models were quite encouraging.
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1.
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
In recent years distributional reinforcement learning has produced many state of the art results. Increasingly sample efficient Distributional algorithms for the discrete action domain have been developed over time that vary primarily in the way they parameterize their approximations of value distributions, and how they quantify the differences between those distributions. In this work we transfer three of the most well-known and successful of those algorithms (QR-DQN, IQN and FQF) to the continuous action domain by extending two powerful actor-critic algorithms (TD3 and SAC) with distributional critics. We investigate whether the relative performance of the methods for the discrete action space translates to the continuous case. To that end we compare them empirically on the pybullet implementations of a set of continuous control tasks. Our results indicate qualitative invariance regarding the number and placement of distributional atoms in the deterministic, continuous action setting.
translated by 谷歌翻译